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Abstract: Modern design-conscious products have raised the development of advanced electronic
fabricating technologies. These widely used industrial technologies show high compatibility for
inorganic materials and capacity for mass production. However, the morphology accuracy is hard
to ensure and cracks happen easily, which could cause the degradation of device performance and
life span. In order to make high precision 3D conformable electronics, a thermal phase-changing
adhesion interlayer and modified fabricating processes are used in self-developed equipment.
The working principles and influencing factors such as heating time and geometry parameters
are studied quantitatively. The accuracy of fabricated patterns is enhanced by this new technology
and serpentine designed structures. The delamination or detachment are significantly alleviated.
Due to the operation convenience and compatibility with existing materials, the presented fabrication
method has great potential for mass production of 3D curved conformable electronics.

Keywords: thermoforming; high precision; phase change; laminated structures; cracks and
delamination

1. Introduction

With the increasing demand for attractive features and comfortable user experience, chips and
circuits are specially designed to integrate above or into modern compact and design-conscious
electronic products [1–3]. For example, epidermal electronics [4], flexible solar cells [5], diodes [6,7],
and conformal food sensors [8] were presented by fabricating electrical components on thin and
elastomeric films. 3D electrical antennas were made by conformal printing of metallic inks [9,10] or
through pneumatically inflating [11]. These devices can be easily applied to curved objects. However,
these methods inherently have high requirements for equipment and materials [12,13]. Off the beaten
track, the technology based on standard printed circuit board (PCB) patterning and assembly methods
shows more potential for mass production without the requirement of cleanroom processing [14,15].
By simply integrating the inorganic interconnections with thermoplastic substrates, it was easy
to obtain curved-shape circuits with a thermoforming technique [16–18]. However, when these
functional layers were conformed to target surfaces, the circuits and substrates would be stretched
at different ratios due to discontinuity of geometry and material properties. In order to alleviate the
cracks induced by delamination between different layers, not only were the buffer mediums such as
polydimethylsiloxane(PDMS) stamps [19] or water [20,21] introduced during transfer printing, but also
the deformation behaviors and failure mechanisms of planar conductors encapsulated with polymers
were studied [22–25]. Therefore, a number of constraints on materials and fabrication processes need
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to be considered to ensure product quality. In order to guarantee the intimate contact and deformation
with less constraint concentration, the interfaces between circuits and substrates need to specially
designed [26–28]. Meanwhile, cracks were easily induced by adhesion forces [29,30]. The lack or
excess of accurate and effective adhesion may hereby trigger a following detachment and delamination.
Therefore, the thermoforming processes were hard to control accurately when mapping inorganic
patterns from planar surfaces into complex shapes.

By introducing a thermal bonding film as a phase-changing adhesion interlayer during
thermoforming, this paper presents a technology to provide appropriate and adjustable adhesion
forces. The deformation characteristics of substrates/intermediate layer/circuits laminated structures
are quantitatively studied to figure out the working principles. Meanwhile, the influencing factors
during deformation are investigated to improve the precision. Devices with complex patterns and
high electrical performances are fabricated and demonstrated by our presented method.

2. Materials and Methods

Figure 1 shows the fabricating process of 3D conformable electronics, corresponding
self-developed equipment, and a fabricated example on a curved surface. The system includes
four core modules: The visual module, heating module, loading module, and motion control module.
The major steps of the thermoforming process include: Highly efficient patterning of the copper foil
with a UV laser, transfer printing of the pattern and encapsulating, visual alignment and control, and
thermoforming to the target surface through vacuuming.
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Figure 1. The manufacturing process of 3D conformable electronics: (a) The major steps of
the thermoforming process: (i) Patterning the copper foil, (ii–iii) transfer printing, (iv) visual
alignment—the three-dimensional model was put on the platform, and the sample was fixed by
a special fixture, and (v–vii) thermoforming to the target surface through vacuuming. (b) A general
view of the self-developed equipment. The system includes four core modules: 1© The visual module,
2© the heating module, 3© the loading module, and 4© the motion control module. With the help of

visual recognition, the offset between the model and the sample is acquired, and then it is sent to the
stepper motor, which drives the platform to move at a constant speed to achieve visual alignment.
(c) Photo of a sample fabricated by this method.

Copper foil, with a thickness of 9 µm (Shenzhen Kejing Star Technologies Company Limited,
Shenzhen, China) was used as a conductive material. Polycarbonate (PC) film with a thickness of
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130 µm (Dongguan Tiansheng Plastic Material Company Limited, Dongguan, China) was used as a
thermoplastics substrate. Thermal bonding film (3M 615-4.0mil, 3M Innovation Singapore Pte Ltd.,
Tuas, Singapore, with a thickness of 100 µm) was used to enhance the bonding strength of copper foil
and thermoplastics. The three-dimensional models (Foshan Hardware Industrial Company Limited,
Foshan, China) were used as target surfaces.

A UV laser marker (HGL-LSU3/5EI, Huagong Laser, Wuhan, China) was used to pattern the
copper foil. The experimental conditions of the UV laser were 70 kHz, 85 mm/s (the maximum output
power of the machine is 5 watts). The thermal bonding film and the PC film were laminated by
the laminator (LM-330iDX, Leisheng Hardware Company Limited, Wuhan, China) at 105 ◦C for 1–2
times, and then the copper pattern was transferred from the substrate to the thermal bonding film at
120–130 ◦C for 2–3 times.

After visual alignment, the sample was heated for around 70 s with an infrared heater (220 V,
500 W, Dayi Electric Heating Plant, Shanghai, China). After a few seconds, the sample was moved
downward until the sample reached the top point of the target surface. Then, the vacuum module
(220 V, 900 W, Shengzhoushi Shanxi Motor Factory, Shanxi, China) was worked for about 2–3 s.
The maximum vacuum degree which could be provided was 200 Pa. The sample was attached to the
model by vacuum sucking.

2.1. Visual Alignment and Optical Characterization

A photo was taken by a digital camera (XGY500, Microscopic precision, Shenzhen, China) to
acquire the coordinates of the central point and the model. After that, the sample was fixed by
special fixture tools. A photo was taken to calculate the offset between the central point of the model
and the copper pattern on the sample. All the photos were processed by a self-developed program
(Matlab 9.0.0.341360 (R2016a)). Then, an X–Y axis system was built to drive the platform to move at a
constant speed until it compensated the error from when the model was put on. A metallographic
microscope (BA310MET-T, Motic, Xiamen, China) with a CCD camera was used to observe the
microscopic appearance of the copper patterns after vacuum thermoforming. In visual alignment and
thermoforming processing, a normal industrial camera (XGY500, Microscopic precision, Shenzhen,
China) was used to take photos of the samples. When comparing the photos before and after
thermoforming, the angles which represented the central point deviated and the attachments of
the sample to the target surface could be calculated quantitatively.

2.2. Film Morphology and Electrical Characteristic Performance Measurement

The working process was recorded by an industrial camera (XGY500, Microscopic precision,
Shenzhen, China), while a thermal imaging camera (FLIR T630sc, FLIR system, Flir Systems AB, Täby,
Sweden) was used to visualize the real-time temperature field. The surface morphology of laminated
structures was recorded by a metallographic microscope (BA310MET-T, Motic, Xiamen, China) and
quantitatively analyzed by a self-developed program. The electrical characteristic performances of
fabricated samples were measured by RF and microwave combination analyzers (Keysight FieldFox
N9914A, Keysight Technologies, Santa Rosa, CA, USA).

3. Results and Discussion

Figure 2 demonstrates the variations of the thermal bonding films and PC-laminated structures
in circumferential and radial directions before and after thermoforming. A few points with different
polar angles and diameters (marked in Figure 2c,d) are chosen to monitor the variation of these
two layers, which quantitatively reflects the deformation of interlayer/PC substrates under heating.
In circumferential directions, there is good consistency between those points, which can be easily
found in Figure 2a. This demonstrates that the thermally induced phase-change brings no extra
constraints to the substrates. For those points in radial directions, there is also good consistency,
as shown in Figure 2b. It is obvious that the existence of the thermal bonding films would not bring
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non-design systematic errors, which lead to the uncontrollable deviation of pattern. The introduction
of the phase-changing adhesion interlayer has no negative effect on the deformation consistency of
the substrate.
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Figure 2. The circumferential and radial consistency of the thermal bonding films and polycarbonate
(PC)-laminated structures in the process of conforming: (a) The variation of the polar angle after
thermoforming for those marked positions; (b) the variation of the polar diameter after thermoforming
for those marked positions; (c) the locations of those circumferential points; and (d) the locations of
those radial points.

The quantitative deformations of the thermal bonding films and PC-laminated structures after
thermoforming are shown in Figure 3. An Archimedes Spiral pattern was introduced as a calibration
line when studying the stretch principles of the thermal bonding films and PC-laminated structures.
The technological process of this pattern can be found in Figure S3. The models were chosen as target
surfaces: Two hemispheres with diameters 10.0 and 12.5 mm, a half ellipsoid (lengths of the two axes
were 25 and 20 mm). For the radial deformation, it is clear that the laminated structures were stretched
during thermoforming. The pattern was almost mapped full-size near the center of the target surfaces.
However, Figure 3a shows that the elongation turned to increase sharply at these edge parts. It is more
obvious for the model with bigger diameter. Figure 3b shows the deformation in the circumferential
directions. It can found that the laminated structures shrunk during thermoforming. Meanwhile,
the most deformation happens away from the center, with a nonlinear trend. The experiments and
finite element method(FEM)results confirm that more warping and wrinkles arose close to the edges
where the most deformation happens.
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Figure 3. The elongation principles of the thermal bonding films and PC-laminated structures after
thermoforming: (a) The radial elongation ratio from the top to the edge for three models with
different morphology; (b) the circumferential shrinkage ratio from the top to the edge for three
models with different morphology; (c) photos of circuits at different heights; and (d) FEM results of
circuit stress distributions.

Figure 4 shows how those factors such as heating time, the thicknesses of the thermal bonding
films, and the pattern morphologies affect the thermoforming processes when the thermal bonding
films were introduced as intermediate layers. The infrared images of the temperature field are
presented in Figure 4a. When radiant heat is put on the laminated structures, it is clear that the surfaces
curled within 60 s. This is induced by the thermal deformation difference of PC and the thermal
bonding film. The surfaces of the laminated structures turn back to flat with the continuous heating.
The phase changing of the thermal bonding film leads to the decrease of the constraint between PC
and the thermal bonding film. Therefore, the deformation of the substrate looks flatter as a result
of natural relaxation. However, the surfaces curl again as the PC is continuously heated for more
than 90 s. This is due to the overheating of laminated structures (the fracture happens when the
heating time is over 120 s). In order to obtain an ideal flat laminated structure before conforming
to the target object, strict time control and an infrared visual inspection were used to guarantee this.
For those finished conformal devices, two angles (the angle of central deviation, θ, and the angle
of edge warping, α) were introduced to evaluate the effects of patterns aligning and conforming.
Figure 4b,c show the quantitative effect of thermal bonding film thickness and copper line width on the
patterns after thermoforming. It is clear to figure out that those deviations increase with the thickness
of the thermal bonding film. Moreover, the widths of the copper lines demonstrate much stronger
effects on the edge warping. Due to the high Young’s modulus of copper, the deformation difficulty
level of PC/thermal bonding film/copper foil laminated structures increased as the width increased.
As the most deformation happens away from the center, the pattern around the edge is more affected.
The states of circuits at different locations are demonstrated in Figure 4e, including: Fully conformed
and attached (

√
), tiny warping (O), and partly detached (X). The distance from the furthest point is

0.5 mm. Circuits are easily conformed to those parts closer to the center. The constraining effect of
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thermal bonding films becomes weaker with increasing circuit width, which is more obvious near the
edge. This is due to the increasing stiffness and deformation. The theoretical mechanical models of
copper under thermoforming are shown in the Supplementary Materials. When the serpentine design
structures are introduced, the detachment clearly alleviates, as shown in Figure 5f–g. As the thermal
bonding film is chosen as an intermediate layer, it not only provides enough adhesion force to make
the copper foil conform to the target surface, but also allows the sliding/slipping between circuits
and substrates when it is melted. Such a tiny slipping movement could accommodate the gradual
deformation during the thermoforming, which is beneficial to the release of stress concentration.
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Figure 4. The influence of many factors on the thermoforming effect: (a) The infrared images of
the temperature field for laminated structures with different heating times; (b) the angle of central
deviation and the angle of edge warping for thermal bonding films with different thicknesses; (c) the
angle of central deviation and the angle of edge warping for copper patterns with different copper line
widths; (d) the illustration of α and θ; (e) the state of circuits under different thermal bonding film
thicknesses and circuit widths; and (f–g) the experimental and FEM results of serpentine structures.
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4. Electrical Performance of Fabricated Antennas

Two electrically small antennas were fabricated by our method. Figure 5 shows the photos and
electrical performances of these devices. As the presence of a ground plane makes the antennas less
sensitive to nearby coupling structures when applied in a real-world environment, the hemispherical
helix antennas were proven to provide a better base for practical antenna designs. The resonance
frequencies of these antennas are nearly 1050 MHz and the reflection coefficients are around –30 dB,
which are far better than the general indicator requirement numbers. The electrical performance
is clearly distinguished, even if there are only little differences between these two antennas along
the height direction. This demonstrates that the developed fabrication method can guarantee the
convenience of curved device fabricating, as well as morphology accuracy and electrical performance.

5. Conclusions

A new fabricating method and a prototype equipment are presented to enhance the morphology
accuracy in thermoforming when making 3D conformal circuits. Thermal bonding film is introduced
as an interlayer to help the deformation of circuits. It is proven that the thermal bonding film would
not bring extra errors which would induce the deviation of pattern. Most of deformation is found
away from the center, with a nonlinear trend. Instead of a traditional method of improving bonding
strength, the bonding interface could slip without loss of adhesion to avoid stress concentration though
the solid-to-liquid phase change under certain temperatures. The accuracy of fabricated patterns can
be improved by the thermal bonding films and serpentine designed structures. The delamination
and detachment are obviously alleviated. The antennas fabricated by this method are proven to
work well. Due to the high convenience and compatibility with existing and advanced materials [31],
the presented fabrication method has great potential for mass production of curved devices.
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s1, Figure S1: The equipment and core components. Figure S2: The control flow chart. Figure S3: The process
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